

LA-UR-18-20841

Approved for public release; distribution is unlimited.

Title: Basics of Neutrons for First Responders

Author(s): Rees, Brian G.

Intended for: Training presentation - International partners

Issued: 2018-02-05

Basics of Neutrons For First Responders

Brian Rees

Los Alamos National Laboratory

Basic stuff

- Neutron mass 1.008664 amu
- Proton mass 1.007276 amu
- Electron 0.00054858 amu
- Half life 10.25 minutes

Common Origins of Terrestrial Neutron Radiation

Spontaneous Fission

Induced Fission

(α,n) Reactions

Neutron Sources

- Reactors and fuel
- Particle Accelerators
- (α,n) sources: used in research and industry
- Transuranics: spontaneous fission (Pu, Cf-252)
- Natural Neutron Background:
 - Generally from 'cosmic ray' spallation
 - Very weak signal compared with natural gammaray background

Almost all neutron sources are man-made!

Neutron energy

• Thermal neutrons ~2200 m/sec (0.025 eV) 17° C (62° F)

Epithermal
 Faster than thermal

Cadmium cutoff ~0.5 eV

Slow neutrons

• Fast neutrons Fission mean energy ~ 2 MeV - 20,000 km/sec

• D-T fusion 14.1 MeV – 52,000 km/sec

Ultra fast >~20 MeV

Interactions

- Collide with protons
 - About the same mass
 - May displace the proton
 - Attracts an electron
 - Ionizes material
- Absorbed by another nucleus
 - Atom is stable
 - Atom is unstable
 - Energy may be released during or soon after reaction

Detecting Neutrons

- Absorption and nuclear reactions
 - He3

•
$$_{2}He^{3} + _{0}n^{1} \longrightarrow {_{1}H^{3}} + _{1}p^{1}$$

• BF3

•
$${}_{5}B^{10} + {}_{0}n^{1} \longrightarrow {}_{3}Li^{7} + {}_{2}\alpha^{4}$$

- Fission chambers
- Other detectors
 - Li⁶
- Moderation is key to most systems
- Liquid scintilators

Gammas from Neutron Interactions

Neutron-Capture Gammas

Neutron-Scatter Gammas

Thermal neutron is absorbed by target nucleus.

Fast neutron scatters from target nucleus.

ray.

Resulting nucleus emits a gamma ray.

Neutron Signatures in Gamma-Ray Spectra

Neutrons & Nal

Fast neutrons on NaI can inelastically scatter off of 127 I and produce a gamma ray at $^{\sim}59$ keV.

Neuton Fluence to dose (mSv)

Neutron energy (MeV)	Quality factor ^a (Q)	Fluence per unit dose equivalent (neutrons cm ⁻² mSv ⁻¹)
2.5 x 10 ⁻⁸ (thermal)	2	980 x 10 ⁵
1 x 10 ⁻⁷	2	980 x 10 ⁵
1 x 10 ⁻⁶	2	810 x 10 ⁵
1 x 10 ⁻⁵	2	810 x 10 ⁵
1 x 10 ⁻⁴	2	840 x 10 ⁵
1 x 10 ⁻³	2	980 x 10 ⁵
1 x 10 ⁻²	2.5	1010 x 10 ⁵
1 x 10 ⁻¹	7.5	170 x 10 ⁵
5 x 10 ⁻¹	11	39 x 10 ⁵
1	11	27 x 10 ⁵
2.5	9	29 x 10 ⁵
5	8	23 x 10 ⁵
7	7	24 x 10 ⁵
10	6.5	24 x 10 ⁵
14	7.5	17 x 10 ⁵
20	8	16 x 10 ⁵

^a Value of quality factor (Q) at the point where the dose equivalent is maximum in a 30-cm diameter cylinder tissue-equivalent phantom.

^b Monoenergetic neutrons incident normally on a 30-cm diameter cylinder tissue-equivalent phantom.

Instruments' response to neutrons

- Common field RIID
- Dose rate taken with a REM ball (tissue equivalent)
- Different amounts of neutron shielding
 - You don't know what you have
- Rare to find > 1 mSv neutron sources
- 32 CPS = $30\mu Sv 1.6 \text{ mSv}$